Formulas

1. Present Value of a Single Cash Flow
 \[PV = \frac{CF}{(1+i)^n} \]

2. Future Value of a Single Cash Flow
 \[FV = CF(1+i)^n \]

3. Present Value of an Ordinary Annuity
 \[PV = PMT \left[\frac{1 - (1+i)^{-n}}{i} \right] \]

4. Future Value of an Ordinary Annuity
 \[FV = PMT \left[\frac{(1+i)^{-1}}{i} \right] \]

5. Present Value of an Annuity-Due
 \[PV = PMT \left[\frac{1 - (1+i)^{-n}}{i} \right] (1+i) \]

6. Future Value of an Annuity-Due
 \[FV = PMT \left[\frac{(1+i)^{-1}}{i} \right] (1+i) \]

7. Present Value of a Perpetuity
 \[PV = \frac{PMT}{i} \]

8. Effective Annual Rate (EAR)
 \[EAR = \left[1 + \frac{APR}{M} \right]^{M} - 1 \]
 - APR: Annual percentage rate
 - M: The number of interest conversion per year

9. Bond’s Price
 \[P_0 = \sum_{t=1}^{\infty} \frac{C}{(1+r)^t} + \frac{PAR}{(1+r)^n} \]
 - \(P_0 \): Bond’s price
 - C: Bond’s coupon
 - PAR: Bond’s par (face) value

10. Bond’s Current Yield
 \[CY = \frac{Coupon}{Price} \]

11. Stock’s Constant Growth
 \[P_0 = \frac{D_1(1+g)}{r-g} = \frac{D_0}{r-g} \]
 \[r = \frac{D_1}{P_0} + g \]
 \[g = ROE \times Retention (Plowback) Ratio \]
 - \(P_0 \): Stock’s price
 - \(D_1 \): Dividend in year 1
 - r: Required rate of return
 - g: Dividend growth rate
12. Stock’s Non-constant Growth

\[P_0 = \sum_{t=1}^{N} \frac{D_t}{(1+r)^t} + \frac{H_0}{(1+r)^g} \quad \text{where} \quad H_0 = \frac{D_{N+1}}{r-g} \]

13. Sample Average Return, Standard Deviation, and Covariance

\[\bar{r} = \frac{1}{N} \sum_{t=1}^{N} r_t, \quad s = \sqrt{\frac{\sum_{t=1}^{N} (r_t - \bar{r})^2}{N-1}} \]

\[s_o = \frac{1}{N-1} \sum_{j=1}^{N} (x_j - \bar{x})(y_j - \bar{y}) \]

N: The number of sample data

14. Expected Rate of Return, Standard Deviation, and Covariance

\[E(r) = \sum_{j=1}^{N} p_j r_j, \quad \sigma = \sqrt{\sum_{j=1}^{N} p_j (r_j - E(r))^2} \]

\[\sigma_o = \sum_{j=1}^{N} p_j (x_j - E(x))(y_j - E(y)) \]

p: Probability of outcome i

15. Portfolio’s Expected Rate of Return and Standard Deviation

\[E(r_p) = \sum_{j=1}^{N} w_j E(r_j) \quad \sigma_p = \sqrt{\sum_{j=1}^{N} w_j^2 \sigma_j^2 + \sum_{j=1}^{N} \sum_{i=1}^{N} 2w_j w_i \sigma_j \sigma_i} \]

w_i: Weight for asset i’s value

16. Correlation

\[\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \]

17. Beta

\[\beta_i = \frac{\sigma_{im}}{\sigma_m^2} = \frac{\rho_{im} \sigma_i}{\sigma_m^2} \]

\(\sigma_i \): Standard deviation on asset i’s return

\(\sigma_m \): Standard deviation on the market portfolio’s return

18. Capital Asset Pricing Model

\[r_i = r_f + \beta_i (r_m - r_f) \]

r_i: Risk-free rate of return

r_m: Market portfolio’s rate of return

\(\beta_i \): Asset i’s beta

19. Net Present Value

\[NPV = \sum_{t=1}^{N} \frac{CF_t}{(1+i)^t} - \text{Investment} \]

20. Internal Rate of Return

\[\text{Investment} = \sum_{t=1}^{N} \frac{CF_t}{(1+\text{IRR})^t} \]

21. Modified Internal Rate of Return

\[(1+\text{MIRR})^{N+1} = \sum_{t=1}^{N} \frac{CF_t (1+i)^t}{\text{Investment}} \]

22. Interest Rate Parity

\[p = \frac{(1+i_h)}{(1+i_f)} - 1 \]

p: Forward premium or discount

i_h: Home interest rate

i_f: Foreign interest rate
23. Purchasing Power Parity

\[e_f = \frac{(1 + I_h)}{(1 + I_f)} - 1 \]

e_f: the percentage change in the value of the foreign currency.
I_h: Home inflation rate
I_f: Foreign inflation rate

24. International Fisher Effect

\[e_f = \frac{(1 + i_h)}{(1 + i_f)} - 1 \]

25. Additional Funds Needed

\[AFN = \left(\frac{A_0}{S_0} \right) (S_1 - S_0) - \left(\frac{L_0}{S_0} \right) (S_1 - S_0) - MS_1R \]

A_0: The amount of assets required to support sales
S_0: Sales during the past year
S_1: Forecasted sales
M: Profit margin
R: Retention ratio (= 1 – payout ratio)

26. Degree of Operating Leverage, Degree of Financial Leverage, and Degree of Total (Combined) Leverage

\[DOL = \frac{(S - VC)}{(S - VC - FC)} \]

\[DFL = \frac{EBIT}{(EBIT - I)} \]

\[DT(C)L = DOL \times DFL \]

S: Sales
VC: Variable costs
FC: Fixed costs
EBIT: Earnings before interests and taxes
I: Interest expenses

27. Cash Conversion Cycle

\[CCC = \frac{(Inventory/\text{Cost of goods sold per day}) + (Receivables/Sales per day)}{(Payables/\text{Cost of goods sold per day})} - \]

28. Nominal Annual Cost of Trade Credit and Effective Annual Cost of Trade Credit

Nominal annual cost of trade credit = Discount% / (100 – Discount%) x [365/(Days credit is outstanding – Discount period)]

Effective annual cost of trade credit = [1 + Discount% / (100 – Discount%)]^365/(Days credit is outstanding – Discount period)]

29. Black-Scholes Option Pricing Model

\[Call = S_o N(d_1) - X e^{-r \cdot t} N(d_2) \]

\[Put = X e^{-r \cdot t} N(-d_2) - S_o N(-d_1) \]

\[d_1 = \frac{\ln \left(\frac{S_o}{X} \right) + \left(r + \frac{\sigma^2}{2} \right) t}{\sigma \sqrt{t}} \]

\[d_2 = d_1 - \sigma \sqrt{t} \]

S_o: Stock’s price
X: Exercise (Strike) price
t: Option’s maturity
N(.): Cumulative probability of standard normal distribution
<table>
<thead>
<tr>
<th>z</th>
<th>.00</th>
<th>.01</th>
<th>.02</th>
<th>.03</th>
<th>.04</th>
<th>.05</th>
<th>.06</th>
<th>.07</th>
<th>.08</th>
<th>.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0</td>
<td>.5000</td>
<td>.5040</td>
<td>.5080</td>
<td>.5120</td>
<td>.5160</td>
<td>.5190</td>
<td>.5239</td>
<td>.5279</td>
<td>.5319</td>
<td>.5359</td>
</tr>
<tr>
<td>.1</td>
<td>.5398</td>
<td>.5438</td>
<td>.5478</td>
<td>.5517</td>
<td>.5557</td>
<td>.5596</td>
<td>.5636</td>
<td>.5675</td>
<td>.5714</td>
<td>.5753</td>
</tr>
<tr>
<td>.2</td>
<td>.5793</td>
<td>.5832</td>
<td>.5871</td>
<td>.5910</td>
<td>.5948</td>
<td>.5987</td>
<td>.6026</td>
<td>.6064</td>
<td>.6103</td>
<td>.6141</td>
</tr>
<tr>
<td>.3</td>
<td>.6179</td>
<td>.6217</td>
<td>.6255</td>
<td>.6293</td>
<td>.6331</td>
<td>.6368</td>
<td>.6406</td>
<td>.6443</td>
<td>.6480</td>
<td>.6517</td>
</tr>
<tr>
<td>.4</td>
<td>.6554</td>
<td>.6591</td>
<td>.6628</td>
<td>.6664</td>
<td>.6700</td>
<td>.6736</td>
<td>.6772</td>
<td>.6808</td>
<td>.6844</td>
<td>.6879</td>
</tr>
<tr>
<td>.5</td>
<td>.6915</td>
<td>.6950</td>
<td>.6985</td>
<td>.7019</td>
<td>.7054</td>
<td>.7088</td>
<td>.7123</td>
<td>.7157</td>
<td>.7190</td>
<td>.7224</td>
</tr>
<tr>
<td>.6</td>
<td>.7257</td>
<td>.7291</td>
<td>.7324</td>
<td>.7357</td>
<td>.7389</td>
<td>.7422</td>
<td>.7454</td>
<td>.7486</td>
<td>.7515</td>
<td>.7549</td>
</tr>
<tr>
<td>.7</td>
<td>.7580</td>
<td>.7611</td>
<td>.7642</td>
<td>.7673</td>
<td>.7704</td>
<td>.7734</td>
<td>.7764</td>
<td>.7794</td>
<td>.7823</td>
<td>.7852</td>
</tr>
<tr>
<td>.8</td>
<td>.7881</td>
<td>.7910</td>
<td>.7939</td>
<td>.7969</td>
<td>.7995</td>
<td>.8023</td>
<td>.8051</td>
<td>.8078</td>
<td>.8106</td>
<td>.8133</td>
</tr>
<tr>
<td>.9</td>
<td>.8159</td>
<td>.8186</td>
<td>.8212</td>
<td>.8238</td>
<td>.8264</td>
<td>.8289</td>
<td>.8315</td>
<td>.8340</td>
<td>.8365</td>
<td>.8389</td>
</tr>
<tr>
<td>1.0</td>
<td>.8413</td>
<td>.8438</td>
<td>.8461</td>
<td>.8485</td>
<td>.8508</td>
<td>.8513</td>
<td>.8554</td>
<td>.8577</td>
<td>.8529</td>
<td>.8621</td>
</tr>
<tr>
<td>1.1</td>
<td>.8643</td>
<td>.8665</td>
<td>.8686</td>
<td>.8708</td>
<td>.8729</td>
<td>.8749</td>
<td>.8770</td>
<td>.8790</td>
<td>.8810</td>
<td>.8830</td>
</tr>
<tr>
<td>1.2</td>
<td>.8849</td>
<td>.8869</td>
<td>.8888</td>
<td>.8907</td>
<td>.8925</td>
<td>.8944</td>
<td>.8962</td>
<td>.8980</td>
<td>.8997</td>
<td>.9015</td>
</tr>
<tr>
<td>1.3</td>
<td>.9032</td>
<td>.9049</td>
<td>.9066</td>
<td>.9082</td>
<td>.9099</td>
<td>.9115</td>
<td>.9131</td>
<td>.9147</td>
<td>.9162</td>
<td>.9177</td>
</tr>
<tr>
<td>1.4</td>
<td>.9192</td>
<td>.9207</td>
<td>.9222</td>
<td>.9236</td>
<td>.9215</td>
<td>.9265</td>
<td>.9279</td>
<td>.9292</td>
<td>.9306</td>
<td>.9319</td>
</tr>
<tr>
<td>1.5</td>
<td>.9332</td>
<td>.9345</td>
<td>.9357</td>
<td>.9370</td>
<td>.9382</td>
<td>.9394</td>
<td>.9406</td>
<td>.9418</td>
<td>.9492</td>
<td>.9441</td>
</tr>
<tr>
<td>1.6</td>
<td>.9452</td>
<td>.9463</td>
<td>.9474</td>
<td>.9484</td>
<td>.9495</td>
<td>.9505</td>
<td>.9515</td>
<td>.9525</td>
<td>.9535</td>
<td>.9545</td>
</tr>
<tr>
<td>1.7</td>
<td>.9554</td>
<td>.9564</td>
<td>.9573</td>
<td>.9582</td>
<td>.9591</td>
<td>.9599</td>
<td>.9608</td>
<td>.9616</td>
<td>.9625</td>
<td>.9633</td>
</tr>
<tr>
<td>1.8</td>
<td>.9641</td>
<td>.9649</td>
<td>.9656</td>
<td>.9664</td>
<td>.9661</td>
<td>.9678</td>
<td>.9686</td>
<td>.9693</td>
<td>.9699</td>
<td>.9706</td>
</tr>
<tr>
<td>1.9</td>
<td>.9713</td>
<td>.9719</td>
<td>.9726</td>
<td>.9732</td>
<td>.9738</td>
<td>.9744</td>
<td>.9750</td>
<td>.9756</td>
<td>.9761</td>
<td>.9767</td>
</tr>
<tr>
<td>2.0</td>
<td>.9772</td>
<td>.9778</td>
<td>.9783</td>
<td>.9788</td>
<td>.9793</td>
<td>.9798</td>
<td>.9803</td>
<td>.9808</td>
<td>.9812</td>
<td>.9817</td>
</tr>
<tr>
<td>2.1</td>
<td>.9821</td>
<td>.9826</td>
<td>.9830</td>
<td>.9834</td>
<td>.9838</td>
<td>.9842</td>
<td>.9846</td>
<td>.9850</td>
<td>.9854</td>
<td>.9857</td>
</tr>
<tr>
<td>2.2</td>
<td>.9861</td>
<td>.9864</td>
<td>.9868</td>
<td>.9871</td>
<td>.9875</td>
<td>.9878</td>
<td>.9881</td>
<td>.9884</td>
<td>.9887</td>
<td>.9890</td>
</tr>
<tr>
<td>2.3</td>
<td>.9893</td>
<td>.9896</td>
<td>.9898</td>
<td>.9901</td>
<td>.9904</td>
<td>.9906</td>
<td>.9909</td>
<td>.9911</td>
<td>.9913</td>
<td>.9916</td>
</tr>
<tr>
<td>2.4</td>
<td>.9918</td>
<td>.9920</td>
<td>.9922</td>
<td>.9925</td>
<td>.9927</td>
<td>.9929</td>
<td>.9931</td>
<td>.9932</td>
<td>.9934</td>
<td>.9936</td>
</tr>
<tr>
<td>2.5</td>
<td>.9938</td>
<td>.9940</td>
<td>.9941</td>
<td>.9943</td>
<td>.9945</td>
<td>.9946</td>
<td>.9948</td>
<td>.9949</td>
<td>.9951</td>
<td>.9952</td>
</tr>
<tr>
<td>2.6</td>
<td>.9953</td>
<td>.9955</td>
<td>.9956</td>
<td>.9957</td>
<td>.9959</td>
<td>.9960</td>
<td>.9961</td>
<td>.9962</td>
<td>.9963</td>
<td>.9964</td>
</tr>
<tr>
<td>2.7</td>
<td>.9965</td>
<td>.9966</td>
<td>.9967</td>
<td>.9968</td>
<td>.9969</td>
<td>.9970</td>
<td>.9971</td>
<td>.9972</td>
<td>.9973</td>
<td>.9974</td>
</tr>
<tr>
<td>2.8</td>
<td>.9974</td>
<td>.9975</td>
<td>.9976</td>
<td>.9977</td>
<td>.9977</td>
<td>.9978</td>
<td>.9979</td>
<td>.9979</td>
<td>.9980</td>
<td>.9981</td>
</tr>
<tr>
<td>2.9</td>
<td>.9981</td>
<td>.9982</td>
<td>.9982</td>
<td>.9983</td>
<td>.9984</td>
<td>.9984</td>
<td>.9985</td>
<td>.9985</td>
<td>.9986</td>
<td>.9986</td>
</tr>
<tr>
<td>3.0</td>
<td>.9987</td>
<td>.9987</td>
<td>.9987</td>
<td>.9988</td>
<td>.9988</td>
<td>.9989</td>
<td>.9989</td>
<td>.9989</td>
<td>.9990</td>
<td>.9990</td>
</tr>
<tr>
<td>3.1</td>
<td>.9990</td>
<td>.9991</td>
<td>.9991</td>
<td>.9991</td>
<td>.9992</td>
<td>.9992</td>
<td>.9992</td>
<td>.9992</td>
<td>.9993</td>
<td>.9993</td>
</tr>
<tr>
<td>3.2</td>
<td>.9993</td>
<td>.9993</td>
<td>.9994</td>
<td>.9994</td>
<td>.9994</td>
<td>.9994</td>
<td>.9994</td>
<td>.9995</td>
<td>.9995</td>
<td>.9995</td>
</tr>
<tr>
<td>3.3</td>
<td>.9995</td>
<td>.9995</td>
<td>.9995</td>
<td>.9996</td>
<td>.9996</td>
<td>.9996</td>
<td>.9996</td>
<td>.9996</td>
<td>.9996</td>
<td>.9997</td>
</tr>
<tr>
<td>3.4</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9998</td>
</tr>
</tbody>
</table>
Summary of Financial Ratios

1. Current ratio = Current assets/Current liabilities
2. Quick (Acid) ratio = (Current assets – Inventories)/Current liabilities
3. Inventory Turnover = Sales/Inventories
4. Days Sales Outstanding (DSO) = Receivables/(Annual sales/365)
5. Fixed Asset Turnover = Sales/Net fixed assets
6. Total Assets Turnover = Sales/Total assets
7. Debt Ratio = Total debt/Total assets
8. Times Interest Earned = Earnings before interest and taxes (EBIT)/Interest charges
9. Operating Margin = Operating income (EBIT)/Sales
10. Profit Margin = Net income/Sales
11. Return on Assets = Net income/Total assets
12. Basin Earning Power = Earnings before interest and taxes (EBIT)/Total assets
13. Return on Equity = Net income/Common equity
14. Price/Earnings = Price per share/Earnings per share
15. Market/Book = Market price per share/Book value per share
16. After-Tax Salvage Value = Sale Price – Tax Rate x (Sale Price – Book Value)
17. DuPont Equation

Return on Equity = Profit Margin x Total Assets Turnover x Equity Multiplier

Equity Multiplier = Total assets/Total common equity = 1/(1 - Debt Ratio)